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The structure of homogeneous turbulence subject to high shear rate has been 
investigated by using three-dimensional, time-dependent numerical simulations of 
the Navier-Stokes equations. The instantaneous velocity fields reveal that a high 
shear rate produces structures in homogeneous turbulence similar to the ‘ streaks ’ 
that are present in the sublayer of wall-bounded turbulent shear flows. Statistibal 
quantities such as the Reynolds stresses are compared with those in the sublayer of 
a turbulent channel flow at a comparable shear rate made dimensionless by turbulent 
kinetic energy and its dissipation rate. This study indicates that high shear rate alone 
is sufficient for generation of the streaky structures, and that the presence of a solid 
boundary is not necessary. 

Evolution of the statistical correlations is examined to determine the effect of high 
shear rate on the development of anisotropy in turbulence. It is shown that the 
streamwise fluctuating motions are enhanced so profoundly that a highly anisotropic 
turbulence state with a ‘one-component ’ velocity field and ‘ two-component ’ 
vorticity field develops asymptotically as total shear increases. Because of high shear 
rate, rapid distortion theory predicts remarkably well the anisotropic behaviour of 
the structural quantities. 

1. Introduction 
The inner region of wall-bounded turbulent shear flows has been the subject of 

many investigations. It has been found that the viscous sublayer contains extremely 
well-organized motions. Flow visualization using the hydrogen-bubble technique by 
Kline et al. (1967) revealed that the coherent motions consist of regions of low- and 
high-speed fluid (‘streaks ’), elongated downstream and alternating in the spanwise 
direction. It was reported that the streaks undergo a series of dynamical processes 
(referred to as the bursting) during which most of turbulence production occurs 
(Kim, Kline & Reynolds 1971). 

Outside the viscous sublayer, the streaks become less discernible and different 
structures persist. Theodorsen (1952, 1955) conjectured that hairpin-shaped vortices 
are the fundamental structures in turbulent boundary layers. Since then a number 
of workers have proposed organized structures and dynamical events in turbulent 
boundary layers, which are based on the presence of hairpin vortices. The flow 
visualization study of Head & Bandyopadhyay (1981) provided strong support for 
the existence of ‘hairpin ’ (or ‘horseshoe ’) vortices in turbulent boundary layers. 
Wallace (1982) analysed experimental results in turbulent boundary layers and 
proposed a hairpin vortex as the dominant flow structure originating from transverse 
vortex lines. Moin & Kim (1985), in their numerical investigation of a turbulent 
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channel flow, reported that the flow indeed contains an appreciable number of 
hairpins, mostly in the logarithmic layer. In a related study, Kim & Moin (1986) used 
conditional sampling techniques to show that the horseshoe-shaped vortical 
structures are associated with high Reynolds-shear stress and make a significant 
contribution to turbulent energy production. 

There are two fundamental mechanisms by which a solid boundary affects 
turbulence : (i) generation of a mean velocity gradient (via the no-slip condition) 
which, upon interaction with turbulent shear stress, supplies energy to turbulence ; 
and (ii) suppression (or blocking) of velocity fluctuations in its vicinity. The first 
effect can be regarded as dynamical and the second effect may be viewed as primarily 
kinematic. Here, it is hypothesized that the two effects are separate in affecting flow 
dynamics. 

There is evidence that both the hairpins and streaks may be due to the effect of 
shear rate rather than due to the suppression of turbulence by the wall. For example, 
Uzkan & Reynolds (1  967) conducted a shear-free turbulent boundary-layer 
experiment by passing grid-generated turbulence over a moving wall. When the 
speed of the moving wall was matched to that of the free stream, a shear-free 
boundary layer was produced and the near-wall streaks disappeared in the absence 
of mean shear. A related experiment was performed by Thomas & Hancock (1977) 
a t  a higher Reynolds number. Rogers & Moin (1987), using direct numerical 
simulation of a homogeneous shear flow, found the presence of hairpin vortices 
similar to those observed in the logarithmic layer of wall-bounded turbulent flows. 
However, their computed velocity patterns did not reveal elongated streaky 
structures; in fact, the shear rate in their computation was comparable with that in 
the logarithmic layer of a turbulent boundary layer. It should be noted that in a 
homogeneous turbulent flow there is no solid boundary to suppress velocity 
fluct,uations. 

The effect of blocking velocity fluctuations near a surface leads to a net transfer 
of energy from the vertical component, v, of turbulence to  the horizontal components 
(Hunt & Graham 1978; Lee & Hunt 1989). This ‘splatting’ effect appears to be the 
reason why the vertical component of the pressure-strain-rate term, p av/ay, changes 
sign in the vicinity of the surface (Moin & Kim 1982). However, the effect of the 
boundary is not important for small eddies a t  y 2 Lo, where Lo is the integral 
leng t hscale . 

The main objective of the present study is to examine whether homogeneous 
turbulence subject to high shear rate, comparable with that found in the viscous 
sublayer, would have streaky structures and statistical correlations similar to those 
found in the viscous sublayer of wall-bounded shear flows. Another objective is to 
examine the performance of rapid distortion theory in predicting the structure of 
turbulence a t  high shear rate. Direct numerical simulation of homogeneous turbulent 
shear flow was carried out to  generate a database. In  this study, particular emphasis 
is placed on the effect of shear rate on the evolution of anisotropy and time- 
dependent structure of turbulence. Results from the present homogeneous-flow 
simulation are compared with those in a turbulent channel flow computed by Kim, 
Moin & Moser (1987). 

Dimensionless parameters that represent structures in turbulent shear flows are 
discussed in 92. The numerical and analytical procedures employed in this work are 
briefly described in $3. In $4, we present the instantaneous turbulence structures in 
a turbulent shear flow subject to strong shear. I n  $ 5 ,  turbulence statistics in a 
homogeneous shear flow are analysed and compared with those in a turbulent 
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channel flow. The summary of our findings and a discussion are given in $6. In this 
work, x, y and z denote the streamwise, normal and spanwise coordinate directions, 
respectively ; the corresponding fluctuating velocity components are u, v and w. 

2. Structural parameters in turbulent shear 
We consider an incompressible, turbulent 

deformation rate in the form 
0 1  

flows 
shear flow subjected to a mean 

:: ): (2.1) 
0 

that is, the mean flow is U =  (Sy,O,O). The ‘shear rate’, S, in a homogeneous 
turbulent flow must be uniform in space and constant in time, whereas it may be a 
function of the gradient-direction coordinate, y, in inhomogeneous flows. Turbulence 
statistics in a homogeneous turbulent flow evolve in time, and the total shear 

p = st (2.2) 
is chosen as the dimensionless time. 

of timescale of turbulence, l l q ,  to that of mean shear, 11s: 
The principal effects of mean shear on turbulence may be represented by the ratio 

S l  s*=-. 
Q 

This dimensionless parameter shall be referred to as the shear-rate parameter. Here, 
1 is a lengthscale for ‘energy-containing’ eddies and q = ip$ is a turbulent velocity 
scale. (Repeated indices imply summation, and an overbar denotes statistical 
average over the three-dimensional space.) Different turbulence lengthscales were 
considered. For the purpose of the present investigation, we seek a dimensionless 
parameter whose magnitude would be a good indicator of the type of structures 
present in turbulent shear flows. The analysis given in the Appendix shows that a 
shear-rate parameter constructed with the Prandtl’s mixing length or the integral 
scale extracted from the two-point cross-correlations between u and v is not capable 
of distinguishing different turbulence structures. It is concluded that the ‘dissipation 
length’, 1, = q3/& (where E = vui,iui,j is the dissipation rate of turbulent kinetic 
energy), yields a shear-rate parameter that gives a better indication of differences in 
turbulence structures. Note that the resulting shear-rate parameter 

8P2 s* =- 
& 

signifies the ratio of the eddy ‘turnover’ time, q2/E, to the timescale of mean 
deformation, 11s. 

Figure 1 shows a profile of the shear-rate parameter in the near-wall region of a 
turbulent channel flow computed by Kim et al. (1987). The distance normal to the 
wall is made dimensionless by using the viscous lengthscale (v/U,) : y+ = yU,/v, where 
U, = & and 7, = vdU/dyl, is the kinematic wall shear stress. The shear-rate 
parameter attains its maximum, #Zax z 35, a t  y+ z 10 in the viscous sublayer and 
decreases to about one-sixth of the maximum in the logarithmic layer (y’ > 50). 

The existence of the streaky structures in a turbulent boundary layer has been 
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FIGURE 1. Profile of the shear-rate parameter S* 0s. y+ in a turbulent channel pOw (Kim et al. 
1987), where S* = (dU/dy)q'/e, y+ = yU, / v  and U, = (vdU/dyIw)T. 
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FIQURE 2. Profiles of the two dimensionless parameters used to identify $rea_ks $ a turbulent 
channel flow (Kim et al. 1987): (a )  energy-partition parameter, K* = 2uz/(v2+wz); (b )  eddy- 
elongation parameter, L* = LEAl(2LZh). The streak-identification criteria, K* > 5 and L* > 8, are 
satisfied by the near-wall region, 2 < y+ < 35. 

Y+ 
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deduced largely by flow visualization techniques. Here, we consider two quantitative 
measures that reflect the highly anisotropic nature of the streaky structures : (i) high 
concentration of turbulent kinetic energy in the streamwise component, u ;  and (ii) 
elongation of lengthscales associated with u in the streamwise direction. These two 
salient features of streaks can be quantified respectively by the dimensionless 

parameters - 
2u2 K* = 

(w2+  w’) ’ (2.5) 

where K* and L* are referred to as the (streamwise) energy-partition and eddy- 
elongation parameters, respectively. For the streamwise and spanwise lengthscales in 
L*, we use the corresponding integral scales of the streamwise velocity, i.e. 1, = Lfd 
and 1, = 2LZL. (Note that K* = 1 and L* = 1 in isotropic turbulence.) Profiles of K* 
and L* in the channel flow are shown in figure 2. The wall-layer streaks are known 
to exist for 2 < y+ < 3Ck35, suggesting 

K* > 5, L* > 8 (2.7) 
as our criteria. 

Turbulence statistics of primary interest in the present study are the (kinematic) 
Reynolds stresses, R, = m, which have a significant contribution from large-scale 
motions, and the vorticity correlations, v, = 02, with a significant contribution 
from small-scale eddies (o is the fluctuating vorticity). In homogeneous turbulence, 
the dissipation rate is directly related to the vorticity variance: E = vw’* where 

turbulence, however, this relationship holds at high Reynolds numbers only (see 
Tennekes & Lumley 1972, p. 88). 

Other quantities of interest are the anisotropy tensors for velocity and vorticity 

w12 = - w, wi (a primed quantity is the root-mean-square value). I n  inhomogeneous 

moments 

The overall degree of anisotropy in the Reynolds-stress and vorticity correlation 
tensors may be measured by the second invariants of the anisotropy tensors: 

11, = -ibiibji,  11, = -+ijwji. (2.9) 

These measures for the Reynolds-stress tensor were first introduced by Lumley (see 
Lumley 1978). The reader is also referred to Lee (1985, $2.5) for a detailed discussion 
on the properties of the anisotropy tensors and their invariants. 

3. Numerical simulation and rapid distortion theory 
3.1. Numerical simulation 

The direct numerical simulation (DNS, hereinafter) reported here was carried out on 
a Cray X-MP computer with a pseudo-spectral code developed by Rogallo (1981) for 
homogeneous turbulence. The algorithm employs a linear transformation by which 
the flow variables of the Navier-Stokes equations are computed on a grid rotating 
and deforming with the gradient of an imposed mean flow (for details of the 
algorithm, see Rogallo 1981 ; Lee 1985). In such a simulation, as the grid becomes 
greatly distorted, the range of lengthscales of turbulence in some direction may not 
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FIGURE 3. Initial isotropic turbulent field for the shear-flow simulations : ( a )  two-point velocity 
correlations, Qz[rz) ,  showing that the computational domain is sufficiently larger than the 
correlation scales ; ( b )  one-dimensional energy spectra, E U ( ~ , ) ,  showing the general adequacy of the 
grid resolution. -, i, j = 1 , l ;  ---- , i , j  = 2 , 2 ;  ---, i , j  = 3,3.  

be contained within the resolved range. This problem is usually avoided by 
remeshing of the distorted grid (at regular intervals), which, however, introduces 
alias errors. The resulting alias errors may be removed by a combination of phase 
shift and truncation of high wavenumbers, the latter of which in effect leads to loss 
of energy (and dissipation rate), on the order of 1-5% if shear is weak. 

When turbulence is subjected to high shear rate, the loss of energy (and dissipation 
rate) is rather substantial : 20-40 %. However, because strong shear gives rise to a 
growth of turbulence lengthscales with the mean flow, the grid distortion is expected 
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FIGURE 4. Variation of the shear-rate parameter, S*, with total shear, b, in homogeneous 
turbulent shear flows (DNS) for different initial values: a, S: = 33.5; ., S: = 100. 

to be less of a concern than in the case of weak shear where small-scale eddies are not 
well resolved since they remain more isotropic. For these reasons, in the present 
shear-flow simulations we chose not to remesh the grid. 

The computations were conducted on a mesh with 8.4 x lo6 grid points, 
512 x 128x 128 in the streamwise (x), normal (y) and spanwise (2) directions, 
respectively. A uniform grid spacing was used in all the three directions. The 
computational domain is four times larger in the streamwise direction to 
accommodate elongated eddies that form owing to high shear rate. However, beyond 
some total shear a t  which the streamwise extent of the eddies has grown comparable 
to the domain, the numerical simulation will suffer from insufficient resolution. 

The initial velocity field for the shear-flow simulations was obtained from a 
separate isotropic-decay run -- (without mean velocity gradients) in which the 
velocity-derivative skewness, ufZ/u”, had attained a value of -0.47, in good 
agreement with the experimental data (for a succinct review, see Tavoularis, Bennett 
&, Corrsin 1978). The initial anisotropy was negligibly small: III,I x 4 x lop5 and 
III,J x 8 x lo-’. The two-point correlations and one-dimensional spectra of velocity 
components of the developed isotropic field are shown in figure 3. The computational 
domain is about 16 times larger than the distance a t  which the two-point correlations 
vanish, illustrating that the domain is sufficiently large. The energy spectra show 
that the energy density contained at high wavenumbers is several decades lower than 
that a t  low wavenumbers, indicating the general adequacy of the grid resolution. 

Because i t  was not obvious apriori what shear rate, S,  in a homogeneous shear flow 
would, a t  the developed stage, result in a value of S* comparable with the maximum 
value in the channel flow = 35 at yf x 10, see figure l), i t  was necessary to try 
several values of the shear rate. Figure 4 shows the evolution of the shear-rate 
parameter (or equivalently, the turbulence timescale, q 2 / q  since S is constant) for 
two numerical simulations conducted a t  different initial values, S t  = 33.5 and 100. 
I n  each case, there is a transient period associated with the response to imposed mean 
shear followed by a period of slow monotonic growth; the period of the transient 
behaviour is longer in the higher shear-rate case (S; = 100). The case with X,* = 33.5 
was chosen for a detailed study, because of its better agreement with the value of S* 
a t  y+ x 10 in the turbulent channel flow (cf. figure 1) .  



568 M .  J .  Lee,  J .  Kim and P.Moin 

The grid spacing used in the selected shear-flow simulation (S,* = 33.5) was A x 
4(v/S)a. The turbulence Reynolds number defined as Re, = q4/(ve) ranged from 300 
to 2400 for p = 0-16 (note that Re ,  = 9u'*/(vs) in isotropic turbulence). The 
Reynolds -- number, Re, = qh/v, based on the longitudinal Taylor microscale, h = 
(u2/u',)i, ranged from 40 to 400. 

3.2. Rapid distortion theory 
Rapid distortion theory (RDT, hereinafter) is useful for understanding the dynamics 
and structures of turbulence subjected to high mean-field deformation rates (see, for 
example, Hunt 1978 for a review). When the mean deformation is very rapid 
compared to the turbulence timescale (i.e. S* %- i ) ,  the governing equations in 
homogeneous turbulence can be linearized by neglecting the nonlinear (turbulent 
inertial) terms : 

au 1 
- + ( U . V ) u  = - -Vp+vV2u-(u.V) u. (3.1) 
at P 

In a homogeneous shear flow, the uniform mean shear asymptotically aligns 
wavenumber vectors in the vertical (y) direction and gives rise to a linear growth of 
its magnitude with the total shear. Analytical solutions for the Fourier amplitudes, 
i i ( ~ ,  t ) ,  of velocity fluctuations can be obtained in closed form as functions of the total 
shear and their initial values, G ( K ,  0) (Moffatt 1967 ; Townsend 1970). Statistical 
quantities such as the energy spectra and correlations can then be obtained directly 
from G ( K ,  t ) .  The last term, (u.V) U = (Sw, O , O ) ,  in the linearized equation represents 
distortion of turbulence by mean vorticity, a principal mechanism by which kinetic 
energy is supplied from the mean to turbulence in a shear flow. 

Turbulence statistics predicted by RDT are compared with those of the numerical 
simulation to examine the relevance of the theory. A unique feature of the 
application of RDT in the present work is the combination of DNS and RDT which 
allows the study of instantaneous flow fields, unlike previous studies where only the 
statistical quantities could be examined. The initial conditions for the Fourier 
velocity components in our RDT calculation were the same (developed) isotropic 
turbulent field used to initialize the shear-flow simulations. We have computed 
instantaneous turbulence fields using RDT in an attempt to elucidate the essential 
mechanism(s) associated with the formation of the streaks in turbulent shear flow. 

4. Instantaneous turbulence structures 
To examine the effect of shear rate on instantaneous turbulence structures, 

contours of the streamwise component of velocity fluctuations in a homogeneous 
shear flow at a low shear rate (S* % 9, Rogers & Moin 1987) are plotted on a 
horizontal (2, 2)-plane in figure 5 .  Flow structures at this low shear rate are not highly 
elongated in the streamwise direction. Rogers & Moin showed that the flow field 
contains a number of hairpin vortices. Note that the value of S* for this field is 
comparable with that in the logarithmic layer of a turbulent channel flow (S* x 7)  
as shown in figure 1. Here and in the following contour plots, tick marks on the inner 
axes denote the location of the grid points, and the outer axes show the extent of a 
domain in the viscous lengthscale, (v/S)i  (analogous to the wall unit, v/U,, for wall- 
bounded flows) ; each tick mark represents 20 viscous units. 

In  figures 6 and 7, plots of u-contours in the homogeneous turbulent shear flow at  
the high shear rate are shown a t  times /3 = 4 (S* = 29.8) and 8 (S* = 33.6), 
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FIGURE 5. FIGURE 6. 

FIGURE 5. Contours of the streamwise turbulent velocity in a homogeneous turbulent flow at a low 
shear rate (S* = 8.65, Rogers & Moin 1987) : B = 8. -, u 3 0 ;  ----, u < 0. Each tick mark on 
the outer axes represents 20 viscous units, (v/S)i .  In the presence of weak shear, the flow structures 
are not highly elongated. 

FIGURE 6. Contours of the streamwise turbulent velocity in a homogeneous turbulent flow (DNS) 
subject to a high shear rate (S* = 29.8) : f i  = 4. -, u 3 0;  ----, u < 0. Each tick mark on the 
outer axes represents 20 viscous units, (v/S)k. At an early time, the strong shear produces structures 
somewhat elongated in the streamwise direction. 

respectively. The spanwise (2) and streamwise (x) dimensions of the figures are about 
500 and 1000 in the viscous length units, respectively. (Only half of the streamwise 
extent of the computational domain is shown in these figures.) At the earlier time 
(/3 = 4, figure 6 ) ,  the structures are somewhat elongated in the streamwise direction, 
and at the later time (/3 = 8, figure 7), the structures become highly elongated in the 
flow direction and narrow in the spanwise direction. 

Figure 8 shows contours of instantaneous u from a field obtained by RDT, with the 
same initial velocity field as for the DNS fields in figures 6 and 7 .  The shear-rate 
parameter for this RDT field (/3 = 8) is S* = 37.9. The gross feature of the streaky 
structures in the DNS field (figure 7) is also discernible in the RDT field, indicating 
that the essential mechanism responsible for formation of the streaks is contained in 
the linear theory. 

To compare to wall-bounded shear flows, contours of the streamwise velocity 
component a t  y+ x I 0  in a turbulent channel flow (Kim et al. 1987) are plotted in 
figure 9. The spanwise and streamwise dimensions are about 500 and 1000 wall units 
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FIGURE 7 .  FIGURE 8. 

FIGURE 7. Contours of the streamwise turbulent velocity in a homogeneous turbulent flow (DNS) 
subject to a high shear rate (S* = 33.6): ,5' 8. -, u > 0;  ----, 'u < 0. Each tick mark on the 
outer axes represents 20 viscous units, (v/S)l .  As total shear increases, the structures become highly 
elongated in the flow direction and narrow in the spanwise direction owing t o  the strong shear. 

FIGURE 8. Contours of the streamwise t,urbuleiit velocity in a homogeneous turbulent shear flow 
predicted by RDT: p = 8, S* = 37.8. -, u 2 0;  ----, u < 0. Each t,ick mark on the outer axes 
represents 20 viscous units, (v/S)i .  Note the close similarity between the instantaneous flow 
structures in the DNS and RDT fields (cf. figure 7 ) .  

(v/U,),  respectively. It can be seen that there is a resemblance between the flow 
patterns in figures 7 and 9. However, the eddies in the homogeneous flow are less 
streaky than those in the sublayer of the channel. 

The mean spacing between the streaks in the sublayer of a turbulent boundary 
layer is usually inferred from the two-point autocorrelation of the streamwise 
velocity with spanwise separations, Q:,(r,). Since the low- and high-speed streaks 
alternate in the spanwise direction, the mean streak spacing is about twice the 
separation a t  which the minimum value (negative) of Q$,(T,) occurs. The mean 
spacing of the sublayer streaks in figure 9 (y' x 10) was estimated as hi = A, U J v  z 
100 (Kim et al. 1987), in good agreement with experimentally observed values (see 
e.g. Smith & Metzler 1983). If the mean streak spacing is scaled by a viscous length, 
(v/S)i ,  based on the local mean shear rate (S = dU/dy), then A,* = h,/(v/S)i 
110-200 in the region where S* > 20 (5 < y+ < 15). Figure 10 shows the two-point 
correlation function, Qzu(r2),  for the homogeneous shear flow that contains the 
streaky structures as shown in figure 7. The flat region (instead of the usual sharp 
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FIGURE 9. Contours of the streamwise turbulent velocity in a turbulent channel flow (Kim et al. 
1987): y+ x 10 (S* = 35.1). --, u 2 0;  ----, u < 0. Each tick mark on the outer axes represents 
20 wall units, v/U,.  
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FIGURE 10. Bpanwise two-point autocorrelation function of the streamwise velocity, Q:u(~z), for 
homogeneous shear turbulence (DNS) subjected to a high shear rate: p = 8. 
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FIGURE 11. Comparison of cohtours of instantaneous uu:  (a )  homogeneous turbulent shear flow 
(DNS), /j’ = 8, S* = 33.6; ( b )  turbulent channel flow (Kim et al. 1987), y+ e 10, S* = 35.1. -, 
-uv 2 0;  ----, -uv < 0. Each tick mark on the outer axes represents (a )  20 viscous units, (v /S) i ;  
and ( b )  20 wall units, v/U, ,  respectively. 

minimum for a wall-bounded turbulent flow) of negative values of the two-point 
correlation indicates the existence of a wide distribution of spacings between streaks 
in the homogeneous shear flow. The mean streak spacing estimated from the figure 
varies from about 120 to 200 in units of the viscous lengthscale, (v/s)$, comparable 
with the range of values in the sublayer of a wall-bounded flow. 

But, the above agreement between the two flows of the mean streak spacing in the 
viscous length units is coincidental a t  large, because in inhomogeneous shear flow the 
flow geometry, such as non-uniform mean velocity profile and/or flow width, 
primarily sets a lengthscale of the dominant motion, while in homogeneous shear flow 
the initial energy spectra determine the scales of turbulent eddies that develop in 
time (see the inhomogeneous RDT analysis of a uniform-shear boundary layer by Lee 
& Hunt 1989). The more important implication of the similarity in turbulence 
structure between the two flows is that the dominant mechanism in the production 
(and maintenance) of the preferred structures (i.e. streaks) in all turbulent shear 
flows a t  high shear rate is a selective amplification of eddies primarily by the linear 
interaction with mean shear, and the essence of such a mechanism is accurately 
contained in RDT. 



Th

It is of great interest to examine the spatial distribution of the turbulence 
production term, -mdU/dy, in the two flows. In  figure 11 ,  contours of instantaneous 
uv are shown in horizontal planes in the homogeneous and channel flows. The most 
conspicuous feature of the uv-distribution is that regions of high Reynolds-shear 
st,ress (and turbulence production) in both flows are very intermittent and localized 
in space. 

Contours of the streamwise velocity, u (and uv), in the vertical (x, y)-plane of the 
homogeneous shear flow (not shown here) indicate that the vertical extent of the 
streaks is very narrow compared even with the spanwise extent and that the streaks 
have a shallow angle (less than 10” at  p = 8) with the flow direction, similar to those 
in the sublayer of wall-bounded flows. The ‘flat-eddy ’ model of Landahl(1977, 1980), 
proposed based on the large (streamwise to vertical) aspect ratio and the shallow 
inclination of the wall-layer eddies, has shown how an inviscid, linear mechanism 
leads to formation of longitudinal streaks (or internal shear layers). 

In comparing the instantaneous structures, however, we do not contend that the 
two flows are similar in every detail. I n  order to see how the distribution of velocity 
fluctuations is different (or similar) in the two flows, we examine higher-order 
statistics. In  the homogeneous flow (DNS and RDT), the streamwise component of 
velocity fluctuation, u, has a skewness factor close to zero (0.014.02) and a flatness 
factor of about three (i.e. same as for a Gaussian distribution) ; the other components 
also have almost Gaussian distributions. In  the channel flow, however, the skewness 
and flatness factors of u are 0.1 and 2.2,  respectively, and those of v are -0.2 and 7.9 
at, y+ x 10 (Kim et al. 1987). Since the gross feature of the instantaneous structures 
of turbulence a t  high shear rate has an apparent similarity, the departure from 
Gaussianity of velocity distribution in the channel flow is due to the presence of a 
solid boundary. The inhomogeneity resulting from the suppression effect (absent in 
homogeneous turbulence) gives rise to transport, among other things, which requires 
non-zero third moments. 

5. Turbulence statistics 
5.1. Homogeneous shear turbulence 

The time history of the Reynolds-stress anisotropy tensor is shown in figure 12. The 
most distinguished feature in the energy partition among components is that 
turbulent kinetic energy is increasingly concentrated in the streamwise component 
(b l l ) ,  suggesting that prolonged shear would produce, in the limit p+m, a ‘one- 
component’ turbulence (u2/u1 = uJul = 0 or, equivalently, b,, = !, b,, = b,, = -4; 
see also figure 17) .  The shear-stress component, Iblzl, first increases to a maximum 
(0.15 f 0.02) a t  around /3 = 2, and then gradually decreases owing to a rapid growth 
of the turbulent kinetic energy relative to that of the shear-stress magnitude. The 
RDT results in the figure are in good agreement with the simulation data for all the 
components, indicating that the energy distribution among the components a t  high 
shear rate is accurately represented by the linear theory. 

Variation of the energy-partition parameter, K* = ( Q +  2bl1)/($- b,,), with the 
total shear is shown in figure 13 for homogeneous shear flows at different shear rates. 
It is clearly shown that a strong shear leads to a much higher value of K*. Note that 
the first criterion for identification of streaks, i.e. K* > 5, is not satisfied for any 
values of the total shear in the low shear-rate case, in accord with the observation 
that this flow does not contain streaky structures (Rogers & Moin 1987). In  the 
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FIGURE 12. Comparison between DNS and RDT of the development of the Reynolds-stress 
anisotropy in homogeneous turbulent shear flow. Symbols are from DNS: 0,  b l l ;  A,  b Z 2 ;  0, b33; 
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FIQURE 13. Evolution of the energy-partition parameter, K*,  in homogeneous turbulent flows at 
different shear rates. 0, low shear-rate case (s,* x 5, DNS); 0 ,  highshear-rate case ( S t  sz 34, 
DWS). 

presence of a strong shear, however, K* becomes as high as 10 in the developed stage 
( p  

The evolution of the streamwise integral lengthscale of the streamwise velocity, 
defined as LrL = ~E, , (K ,  = 0 ) / 2 ,  is shown in figure 14. Both the DNS and RDT 
results show that the integral scale grows monotonically with the total shear in the 
presence of a high shear rate. Since turbulent kinetic energy is mostly concentrated 
in the streamwise component in this flow, the longitudinal integral scale, Lfd, can be 
also viewed as representing the streamwise scale of the energy-containing eddies. 
This implies that large eddies in a turbulent shear flow are continuously elongated 
in the flow direction. 

Figure 15 shows the temporal development of the lengthscale ratio of eddies a t  

S), exceeding the threshold value of 5 .  
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FIQURE 14. Comparison between DNS and RDT of growth of the longitudinal integral scale, 
LF2/Lo, in homogeneous turbulent shear flow (Lo is the initial value) : 0 ,  DNS ; -, RDT. 
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FIGURE 15. Evolution of the eddy-elongation parameter, L*, in homogeneous turbulent flows at 
different shear rates: 0,  low shear-rate case (S: z 5, DNS); 0 ,  high shear-rate case (S t  % 34, 
DNS) . 

high and low shear rates. Strong shear produes eddies of high aspect ratio, which 
indicates the development of streaky structures in the flow. Application of the second 
criterion alone, L* = L t i / ( 2 L t i )  > 8, suggests that the streaky structures would 
appear for ,8 2 4. However, combination of the two criteria predicts that  streaks are 
identifiable for ,8 b 8, which is entirely consistent with the appearance of streaks a t  
around ,8 = 8 as shown in $4 (cf. figures 6 and 7). 

In  figure 16, the evolution of anisotropy of the small scales (vorticity) is shown. 
After the initial transient period, the spanwise component of vorticity fluctuations 
( v ~ ~ )  dominates, and the streamwise fluctuation becomes negligible (ql --f -4, or 
wi/wL --f 0). However, the normal component (w2J is significant, indicating that the 
small-scale field would reach a ' two-component ' state in the limit of large /I. The 
cross-correlation component in the vorticity (vI2) shows a trend similar to that of the 



576 M .  J .  Lee, J .  Kim und P .  Moin 

-+-- - - - - - 
”’&” ............ i ..... 

-o.2 t 1 
-0.4 I I I 

0 4 8 12 
P 

FIGURE 16. Comparison between DNS and RDT of the development of the vorticity anisotropy in 
homogeneous turbulent shear flow. Symbols are from DKS: 0, a,,; A, ve t ;  0, u Z 3 ;  @, vI2.  Lines 

V12.  are from RDT : -, v,, ; -- -- . v z 2 ;  ---- , v33; ........, 

FIGURE 17.  Comparison between DKS and RDT of the large- and small-scale anisotropy of 
homogeneous turbulent shear flow. Symbols are from DNS : 0, 3(II,( ; , 31IIJ. Lines are from 
RDT: -, 3)II,I ; ----, 31IIJ. 

Reynolds-stress field (b12) .  Agreement between the simulation and RDT in the 
vorticity anisotropy evolution is not as good as for the Reynolds-stress field, 
indicating the inadequacy of RDT for the small-scale motions. 

Overall anisotropy levels in the large- and small-scale turbulence are compared in 
figure 17. The large-eddy anisotropy, lIIbl, is much larger than the small-scale 
anisotropy, (IIu(, except in the initial transient period. The monotonic growth of (II,( 
is a direct consequence of the dominance of the streamwise velocity component in 
this flow. It is shown in the figure that RDT qualitatively predicts the monotonic 
growth of lIIb/. Also, RDT correctly predicts a maximum of IIIJ near ,I3 = 2 followed 
by a decrease. 

Some earlier attempts to describe laboratory experiments on homogeneous 
turbulence using RDT were not satisfactory, because (i) mean strain rate in the 
experiments was not high enough for RDT to  be applied, i.e. S* - O( 1) ; (ii) the high 
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Homogeneous shear flow (DNS) 
Channel? 
y+ x 10 p = 4  8 = 8  p =  12 

S* 35.1 29.8 33.6 36.2 
Re, 454.0 513.0 1230.0 2400.0 
S / W ’  1.65 1.32 0.960 0.738 

g/q2 0.886 0.610 0.758 0.818 
f l q 2  0.013 0.081 0.049 0.047 
W 2 / Q 2  0.100 0.309 0.194 0.135 

- 

- m/qe 0.054 0.151 0.108 0.100 
t Database generated by Kim et a2. (1987). 

TABLE 1.  Comparison of turbulence statistics at high shear rate 

-- 
degree of anisotropy in ‘initial’ grid turbulence (for example, ui/u: x 1.45 in the case 
of Tucker & Reynolds 1968) was not properly accounted for in the use of RDT ; and 
(iii) the homogeneity of the downstream turbulence (and hence the profile of mean 
velocity) was affected by the rapid growth of the boundary-layer thickness and some 
exit conditions (see e.g. Reynolds & Tucker 1975). Together with the close agreement 
in the present study, the almost perfect agreement in the structural quantities 
between DNS (at low Reynolds numbers) with S* B 1 and inviscid RDT of 
homogeneous turbulence subject to irrotational strains (Lee 1985, 1989) indicates 
that, if S* 9 1 ,  then the flow dynamics is governed principally by an inviscid, linear 
process and there is little effect of Reynolds number. But, if S* is low, the agreement 
is better at low Reynolds numbers because of the smaller effects of nonlinear 
processes a t  the smallest scales. 

5.2. Comparison with a turbulent channel $ow 
In table 1, turbulence statistics in the simulated homogeneous shear flow a t  /3 = 4, 
8 and 12 (8: = 33.5) are compared with those at y+ = 10 of a channel flow (Kim et al. 
1987). At this location, the value of S* in the turbulent channel flow is comparable 
with those in the homogeneous shear flow. In the homogeneous shear flow, the 
turbulence Reynolds number, Re, = $/( V E ) ,  increases with shear, indicating a rapid 
growth of the ‘ large-eddy ’ timescale (a’/€ or eddy ‘ turnover ’ time) compared to the 
‘ small-eddy ’ timescale (w ’ ) .  Note that, in homogeneous turbulence, the Reynolds 
number is the square of the ratio of the two timescales : Re, = (w’q2/E)2.  On the other 
hand, S/w‘ denotes the ratio of the timescale of fine-scale turbulence to that of the 
mean field. Table 1 shows that the values of S and w’ are of the same order both in 
the sublayer of the channel flow and in the homogeneous flow. The ratio is 
significantly lower (S/d x 0.25) in the logarithmic layer of the channel flow, where 
S* is lower. 

Comparison of the Reynolds-stress anisotropy between the two flows shows a 
certain degree of similarity and difference: u’/d % 8 at yf x 10 in the channel and 
u’/d x 4 for p 2 8 in the homogeneous flow. The significant enhancement of the 
streamwise velocity component and reduction of the normal component by shear is 
a common characteristic of both shear flows. The higher value of u‘/d in the sublayer 
of the channel flow is due to the presence of a solid boundary which suppresses the 
vertical component of velocity fluctuation in its vicinity, an effect absent in 
homogeneous turbulence (Hunt 1984; Lee & Hunt 1989). Nonetheless, the high value 
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of u’lv’ in regions slightly away from the boundary (10 < y+ < 30) is primarily due 
to the shear effect, i.e. high shear rate alone can lead to such differences between the 
streamwise and normal velocity fluctuations, 

6.  Summary and discussion 
The instantaneous turbulence structures and temporal development of turbulence 

statistics in a homogeneous shear flow a t  a high shear rate have been analysed by 
using results obtained from a direct numerical simulation. The results have been 
compared with those in a turbulent channel flow and the predictions obtained by 
using rapid distortion theory. Our findings are recapitulated below. 

(i) Considerable similarity in the instantaneous structures and statistical cor- 
relations is found between a homogeneous shear flow and a (inhomogeneous) channel 
flow at  comparable shear-rate parameter, S* = Sq2/c.  

(ii) I t  is shown that high shear rate alone, without the wall: can produce the 
streaky structures similar to those observed in the viscous sublayer of turbulent 
boundary layers. 

(iii) High shear rate produces, in the limit of large total shear, a ‘one-component’ 
velocity field and a ‘ two-component ’ vorticity field. The development of anisotropy 
in the Reynolds-stress and vorticity fields is fairly well predicted by RDT. 

(iv) It is demonstrated that RDT contains the essential mechanism responsible for 
development of turbulence structures in the presence of high shear rate, typical of the 
near-wall region in a turbulent shear flow. 

The present study has shown similarity in statistics and instantaneous structures 
between the viscous sublayer in a wall-bounded turbulent flow and the homogeneous 
turbulent flow a t  high shear rate. Examination of the flow dynamics is necessary to 
establish the role of streaks in turbulence production. Since the basic mechanism for 
generating streaks is associated essentially with the presence of high shear rate and 
such a mechanism is accurately contained in RDT, a further study using RDT of 
dynamics of the streaks and modelling of the near-wall turbulence should provide 
insight into the generating mechanism. 

Homogeneous shear flow and (inhomogeneous) turbulent channel flow are 
perceived to  have very different characteristics. The similarity demonstrated in the 
present work, however, suggests a certain degree of universality among all shear 
flows. This is contrary to the common belief that it is unlikely that a universal model 
for different turbulent flows can be found. On the other hand, this study provides 
some support for the current modelling procedure (e.g. Lumley 1978) that assumes 
universality of local turbulence structures. The key element in constructing such a 
model hinges on identifying dimensionless parameters such as S*. In  order to 
accurately match turbulence statistics of a homogeneous flow with those of an 
inhomogeneous flow, one may have to devise additional parameters such as the 
‘effective total strain’. For instance, a refined model proposed by Townsend (1970) 
uses the effective total strain to account for the differences in non-uniformity of 
statistics in space and time. I n  his model, the effective total strain was modelled by 
defining an ‘effective viscosity ’. Equality of these parameters in different shear flows 
could guarantee similarity in turbulence statistics as well as in instantaneous flow 
structures. 

The main conclusions of this work were presented at the Sixth Symposium on 
Turbulent Shear Flows, Toulouse, France in September, 1987 (Lee, Kim & Moin 
1987). 
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Appendix. Turbulence lengthscales in shear flows 
Because mean shear has a direct effect on large-scale eddies in a turbulent shear 

flow, it is appropriate to represent its effect as the ratio of the timescale of energy- 
containing eddies (Z/q) to that of mean shear (l/S). It then remains to determine 
what lengthscale should be selected for use in the dimensionless shear-rate parameter, 
X l / q .  The most important criterion would be whether the magnitude of the resulting 
shear-rate parameter is capable of distinguishing different turbulence structures. For 
example, in a turbulent channel flow where the nature of turbulent eddies changes 
significantly between y+ z 10 and 50, the suitable candidate should also exhibit a 
significant variation. In  turbulent shear flows, some candidates for 1 include (i) the 
Prandtl’s-‘mixing length’, 1, (see Hinze 1975, $5.2); (ii) the vertical scale of the uv- 
correlations, LLvi; and (iii) the ‘dissipation length’, 1, = q3/s. Here, we examine how 
these lengthscales represent differences in turbulence structures of homogeneous 
turbulent flows at  different shear rates (weak shear, Rogers &, Moin 1987; strong 
shear, the present simulation) and a t  different locations in a turbulent channel flow 
(Kim et aZ. 1987). 

The mixing length is defined as 

(A 1 )  
- - uv = v*s, VT = 21’1, 

where S = dU/dy, or 
-m 

I ,  = - 
SV‘ . 

The resulting shear-rate parameter is then SE = -m/(qw’). Figure 18 shows a slow 
variation of S; with the vertical distance in a turbulent channel flow as well as with 
the total shear in homogeneous shear flow, except very close to the wall (y’ < 5) and 
in the initial transient period (p < 4), respectively. In the channel flow, the variation 
is less than 20% for 10 < y+ < 50; in homogeneous shear flow, values of S: a t  two 
much different shear rates are not significantly different. Thus, S z  is not capable of 
distinguishing different turbulence structures. 

The vertical scale of the turbulent shear stress (uv) was computed from the two- 
point cross-correlations of u and w made dimensionless by the r.m.s. values. For the 
channel flow, the lengthscale, LLvi, was estimated to be the separation distance at 
which the arithmetic mean of the correlations, t[&,*,(y, y’) + &,*,(y, y’)], drops to 0.05. 
This correlation value corresponds to about 10 YO of the peak value a t  y = y’, because 
the peak value (i.e. the correlation coefficient of uw) is about 0.5 in the near-wall 
region, 5 < y+ < 50. For homogeneous shear flow, the integral scale defined by 
LLvd = ~ E , , ( K ~  = O ) / (  -m) was used. Figure 19 shows that in the turbulent channel 
the resulting shear-rate parameter, S,*, = SL$!/q, varies very rapidly in the sublayer 
(y+ < 20) and levels off away from the wall. In  the homogeneous flow a t  a low shear 
rate, S:, seems to reach an asymptotic value of about 2 for large total shear. In  the 
presence of a high shear rate, S,*, appears to decrease with the total shear towards 
the value of the weak-shear case, a behaviour not desirable as the structural 
parameter. 

The dissipation length, 1, = q3/s,  can be regarded as the lengthscale associated 
with ‘energy-containing ’ eddies of turbulence in equilibrium. Figure 20 shows the 
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FIQURE 18. Behaviour of a shear-rate parameter, 8: = Sl,/q, based on the Prandtl's mixing length, 
I ,  = -m/(Sv'). (a) 8: 2)s. y+ in turbulent channel; (b )  15': vs. /3 in homogeneous turbulent Aows 
at different shear rates: 0,  low shear-rate case (8: x 5); 0 ,  high shear-rate case (8: x 34). 

evolution of the resulting shear-rate parameter, S,* = Sl,/q = Sq2/s, in homogeneous 
shear flows. It is apparent that a strong shear produces a much higher value of S,*. 
The profile of S,* in the turbulent channel (figure 1) shows that S,* is much higher 
in the sublayer than in the logarithmic layer, where the respective turbulence 
structures, i.e. streaks and hairpins, are markedly different. It may appear 
inappropriate to use the lengthscale that derives from the concept of equilibrium 
turbulence to describe homogeneous, sheared turbulence evolving in time. Never- 
theless, S,+ correctly indicates the dependence of turbulence structures on mean shear 
both in a channel flow and in homogeneous shear flows. Therefore, in this study we 
use S,* as the primary indicator of the type of turbulence structures, in the absence 
of a better choice. 
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FIGURE 19. Behaviour of a shear-rate parameter, Sz, = SLFJ/q, based on the vertical scale of uw, 
estimated from the two-point cross-correlations of u and w. ( a )  Sf, ws. y+ in a turbulent channel ; (b )  
S:, v8. B in homogeneous turbulent flows at  different shear rates : 0, low shear-rate case (8: x 5) ; 
0 ,  high shear-rate case (8: x 34). 

FIQURE 20. Evolution of a shear-rate parameter, AS,+ = SlJq, based on the dissipation length, 1, = 
q3/e ,  in homogeneous turbulent flows at different shear rates: 0 ,  low shear-rate case (8: z 5) ; 
high shear-rate case (8: % 34). (See figure 1 for the profile of 8: in a turbulent channel flow.) 
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